

by Roberto Lopez and Chris Currey rglopez@purdue.edu ccurrey@iastate.edu

Geranium Cutting Propagation Reducing lower-leaf yellowing

Research shows PGRs can reduce this all-too-common problem.

greenhouses, I have seen the all- too-common lower leaf yellowing of geranium cuttings during propagation (Figure 1a and b). Geranium cuttings (un-rooted) have a short postharvest life and low tolerance to high temperatures during shipping or prolonged shipping or storage. Undesir-

In my recent visits to able postharvest conditions can increase cutting respiration (reducing carbohydrates) and increase ethylene generation in the shipping package or box, which can cause lower-leaf yellowing and senescence during propagation. Is this leaf yellowing a problem? In severe cases, cuttings can lose several leaves and root-

ing can be delayed. Additionally, abscised leaves can host botrytis and cause significant losses during propagation. Therefore, fungicides are often applied during propagation and infected leaves are removed manually to reduce pathogen problems.

Applications of plant growth regulators (PGRs) such

Figure 1a and b. Geranium cuttings with lower-leaf yellowing are a common sight during propagation.

e-GRO Alert

www.e-gro.org

CONTRIBUTORS

Dr. Nora Catlin **Floriculture Specialist Cornell Cooperative Extension -Suffolk County** nora.catlin@cornell.edu

Dr. Kristin Getter Floriculture Outreach Specialist Michigan State University getterk@msu.edu

Dan Gilrein Entomology Specialist Cornell Cooperative Extension -Suffolk County dog1@cornell.edu

Dr. Brian Krug **Floriculture Ext. Specialist** Univ. New Hampshire brian.krug@unh.edu

Dr. Joyce Latimer Floriculture Extension & Research Virginia Tech jlatime@vt.edu

Dr. Roberto Lopez Floriculture Extension Specialist & Research **Purdue University** rglopez@purdue.edu

Dr. Paul Thomas Floriculture Extension & Research University of Georgia pathomas@uga.edu

Dr. Brian Whipker Floriculture Extension & Research NC State University bwhipker@ncsu.edu

Copyright © 2014

Where trade names, proprietary products, or specific equipment are listed, no discrimination is intended and no endorsement. guarantee or warranty is implied by the authors, universities or associations.

Figure 2. Geraniums in propagation with no sprays (top) and geraniums propagated at the same greenhouse four years later with a 2.5 ppm GA⁴⁺⁷ and BA (Fascination).

as benzyladenine (BA; a cytokinin) and/or gibberellic acid er Salmon', 'Fantasia Purple (GA) may suppress lower-leaf Sizzle', 'Fantasia Pink Shell', vellowing and senescence. Growers producing Easter lilies are already familiar with from a commercial propagaapplying a BA and GA, known tor. Upon removal from the commercially as Fascination shipping container, the end of or Fresco, to keep the older, lower leaves green. In the past few years, some propagators of zonal geraniums have also been utilizing BA and GA during propagation to reduce lower-leaf yellowing of geranium cuttings (Figure 72-cell propagation travs in 2).

objectives and Research experiments

several geranium cultivars. under mist. The "greenness"

Un-rotted cuttings of 'Designand 'Presto Dark Red' zonal geraniums were received each cutting was either briefly dipped in a rooting hormone containing 1,000 ppm IBA + 500 ppm NAA (Dip'N Grow Liguid Rooting Concentrate) or received no rooting hormone. Cuttings were then placed in the propagation greenhouse. Sprays at a volume of 2 guarts per 100 ft² containing a surfactant and 0, 1, 2, 3, or 4 Our objectives were to ppm each of BA + GA⁴⁺⁷ (Fresquantify the effects of BA + co; Fine Americas, Walnut GA applications on suppress- Creek, CA) were applied iming lower leaf yellowing of mediately before placement

Cooperating Universities

Cornell University Cooperative Extension of Suffolk County

College of Agricultural and Environmental Sciences College of Family and Consumer Sciences

In cooperation with our local and state greenhouse organizations

of lower leaves was measured 7 days after the beginning of propagation with a SPAD relative chlorophyll meter, and the number of senesced leaves was recorded 28 days after cuttings were treated and placed in the greenhouse. Shoot and root dry weights were measured following harvest.

Our Findings

Cuttings of 'Fantasia Pink Shell' and 'Presto Dark Red' geranium did not exhibit any leaf yellowing indicating that not all cultivars are susceptible to lower leaf yellowing. However, both 'Designer Salmon' and 'Fantasia Purple Sizzle' displayed leaf yellowing once propagation began.

Seven days after PGR applications, the "greenness"

of 'Fantasia Purple Sizzle' and 'Designer Salmon' increased as the concentration of BA + GA4+7 increased from 0 to 4 ppm. After 28 days in propagation, the total number of senesced leaves decreased with increasing PGR concentration for 'Fantasia Purple Sizzle', though only cuttings treated with 4 ppm BA + GA^{4+7} had fewer senesced leaves (Figure 3). 'Designer Salmon' cuttings treated with at least 1 ppm BA + GA⁴⁺⁷ had fewer senesced leaves than untreated cuttings. Shoot and root dry weights were not affected by PGR applications.

The take-home message

Products containing $BA + GA^{4+7}$ are most likely the best for commercial use in geranium propagation. Our

Figure 3. Fantasia Purple Sizzle and Designer Salmon geranium cuttings 28 days after being treated with 0 to 4 ppm BA + GA^{4+7} .

overall results indicate that applying PGR solutions after shipping were more effective than the same PGR applications made before shipping. BA and GA can inhibit rooting; however dipping cuttings in a rooting hormone can partially overcome that suppression. Finally, we have observed in our research and with growers that geranium cultivars vary in their susceptibility to lower-leaf yellowing and senescence. Cultivars with white, pink, salmon and purple flowers tend to be the most susceptible. We found no negative effect of BA + GA4+7 applications on the cultivars that did not exhibit leaf yellowing. This could allow commercial growers to apply BA + GA^{4+7} to all geranium cultivars in propagation, thus simplifying management decisions.

Using PGRCALC, we estimated the PGR spray cost for a foliar application of solution containing 2.5 to 5 ppm BA + GA⁴⁺⁷ at a rate of 2 guarts per 100 ft2to be \$0.44 to \$0.88 per 1,000 ft2 of bench space. Based on this calculation, we believe that the costs for PGR and application labor to prevent lower-leaf senescence are minimal when compared to the potential labor costs to manually remove leaves plus any losses from botrytisinfected cuttings.